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Abstract

This paper presents and defends a way to add a transparent truth pred-
icate to classical logic, such that T 〈A〉 and A are everywhere intersub-
stitutable, where all T -biconditionals hold, and where truth can be made
compositional. A key feature of our framework, called STTT (for Strict-
Tolerant Transparent Truth), is that it supports a nontransitive relation
of consequence. At the same time, it can be seen that the only failures of
transitivity STTT allows for arise in paradoxical cases.

1 Introduction

A transparent truth predicate T is one that, paired with some quotation de-
vice 〈 〉, allows, for any wff A, for the claim T 〈A〉 to be substituted for A
or vice versa, in all extensional contexts in all arguments without change in
validity. This paper presents and defends a way to add a transparent truth
predicate to classical logic, a way that builds on our earlier work on vagueness
in [Cobreros et al., 2012b, Cobreros et al., 2012a]. A number of other authors
have sought a transparent truth predicate, and reached it by weakening classical
logic in various ways. The key advantage of our approach, from which a number
of other advantages will follow, lies in its keeping to classical logic, in a sense
that will be made precise below.

In §2, we present some of the usual reasons for desiring a transparent truth
predicate. If you think transparency is a misguided desideratum, nothing in this
section will convince you otherwise. However, we think many philosophers who
would otherwise be interested in a transparent truth predicate have turned away
from it because of the importance they assign to preserving classical logic. Since
this paper will show that the two are compatible, we want to take the oppor-
tunity to briefly rehearse the reasons for wanting a transparent truth predicate,
as well as to call attention to a few other key desiderata. §3 introduces our
target logic, which we will call STTT, and elaborates on its relation to T -free
classical logic. §4 outlines a theory of paradoxical sentences based on STTT. §5
considers the advantages of our approach, comparing it to a number of other
approaches in the literature. Finally, §6 concludes.
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2 Some desiderata for truth

Theories of the truth predicate differ on whether the latter should be seen
as a ‘thick’ and structured concept, or whether it rather is to be viewed as
a ‘thin’ and simple concept. The view we wish to investigate in this paper
belongs to the latter family. On that view, the reason why truth should be
transparent is related to the function of the truth predicate in natural language,
namely to allow expression of generalizations we could not otherwise express
([Quine, 1970, Field, 2008, Beall, 2009]).

Truth is a generalization device insofar as it allows us to report that the
conjunction of a set of sentences, or their disjunction, holds, without having
to enumerate all sentences in the set, and even without having to know what
sentences are in the set. For instance, if I accept the sentence (1) ‘one of the
things John said was true’, and if it turns out that John said three things,
then I must accept that the condition expressed by the disjunction of the three
sentences said by John holds. For instance, if it turns out that (2) John said:
‘Mary is 30 years old; Mary has a blue car; Mary works in a bank’, I must
accept (3) ‘either Mary is 30 years old, or Mary has a blue car, or Mary works
in a bank’.

This is so because the last sentence is exactly equivalent to (4) ‘either ‘Mary
is 30 years old’ is true, or ‘Mary has a blue car’ is true, or ‘Mary works in
a bank’ is true’. Thus, the equivalence between A and T 〈A〉 is what gets us
from (1) and (2) to (3) via (4): as Quine famously put it, truth behaves as a
disquotation device in the transition from (4) to (3). Conversely, it behaves as
a device of semantic ascent in the transition from (3) to (4): assuming (2) and
(3), in particular, we can only infer the generalization expressed in (1) via (4).

Theories of transparent truth postulate that the intersubstitutibility of A
with T 〈A〉 captures this double function of the concept of truth in natural
language; viz, semantic ascent and disquotation. Although all theories of trans-
parent truth to date agree on this requirement, they still differ on two further as-
pects of its articulation. The first concerns Tarski’s T -biconditionals: A↔ T 〈A〉
(for at least some conditional →). While Tarski’s schema internalizes the very
idea of transparency in the object-language by means of a conditional, the the-
ory of [Kripke, 1975], for example, which is a theory of transparent truth, does
not have the wherewithal to make it valid (because, in fact, it does not make
conditionals of the form A → A valid in the first place). A second aspect con-
cerns the interplay of the truth predicate with the logical vocabulary. On top
of transparency, another natural requirement on truth is compositionality. Sup-
pose John actually uttered (5) ‘Mary has a blue car or Mary works in a bank’.
By transparency, this sentence is true iff Mary has a blue car or Mary works
in a bank, that is, again by transparency, iff ‘Mary has a blue car’ is true or
‘Mary works in a bank’ is true. More generally, a theory of transparent truth
can be said to be compositional if it can prove generalizations such as ‘for any
sentences A and B, their disjunction is true iff A is true or B is true’. Again,
however, this desideratum is not necessarily entailed by transparency, because
it implies internalizing the effect of transparency within the theory.
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In this paper, our aim is to propose a theory of transparent truth that can
be made to satisfy these two extra requirements on the truth predicate. We will
offer a theory where truth is fully transparent, and in which the T -schema holds;
and we will show that it can be extended to capture the compositional behavior
of the truth predicate. (For this purpose, we will, as is customary, appeal
to arithmetic coding to handle the syntactic functions and quantification over
sentences that appear in the compositional principles.) The main challenge for
such a project is posed by the paradoxes, and we will show how our approach
handles them.

3 Trivalence and STTT

A number of approaches to maintaining transparent truth have been tried in
response to the well-known paradoxes that inevitably arise. Many of these (eg
[Priest, 2006b, Kremer, 1988, Beall, 2009, Field, 2008]) are based in some way
on the work in [Kripke, 1975], and our approach is no different. As such, this
section first briefly reviews the so-called ‘Kripke construction’ and its upshots in
§3.1, before proceeding to present our logical framework in §3.2. (Although we
here present our logic model-theoretically, it is susceptible of a proof-theoretic
treatment as well; see [Ripley, 2012a] for a three-sided sequent calculus, or
[Ripley, 2012b] for a more traditional two-sided sequent calculus.)

3.1 Kripke-Kleene models

The Kripke construction starts from a classical model for a base language L
without any truth predicate, and provides a way to generate a model for the
language L+ that adds a transparent truth predicate T to L. For our purposes
here, the details of the construction are irrelevant, and we won’t present them;
what’s important are the models it yields, and their relation to the base-language
models. (For details of the construction, see [Kripke, 1975].)

Kripke’s base-language models are three-valued models for L using the set
{1, 12 , 0} of values, with Kleene’s strong valuation schema.1 According to this
schema, negation maps 1 to 0, 0 to 1, and 1

2 onto itself; conjunction ∧ is defined
as the minimum of the values of the conjuncts, and universal quantification ∀
as the minimum of values over all assignments that differ at most on the value
they assign to the variable bound by the quantifier [Kleene, 1952]. We can
define disjunction ∨, material conditional ⊃, material biconditional ≡ and an
existential quantifier ∃ as usual. We also include constants > and ⊥, which are
required on every model to take values 1 and 0 respectively.

Theories of truth are only interesting when the language in question has
some way of talking about itself. For the bulk of this paper, we do this on
the cheap, supposing that L includes a quote-name-forming operator 〈 〉 such

1Actually, Kripke considers the case where the value 1
2

is unused for anything in the base
language; these are then classical models. As he points out (his fn. 20), this restriction plays
no role, and we drop it here.
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that 〈A〉 is always a name of A, for any wff A of L+.2 (In §3.4, we will be
concerned to discuss a full theory of syntax, and will there temporarily manage
self-reference via Gödel coding.)

The models generated by the construction are also strong Kleene models,
with the additional feature that the value assigned to an atomic sentence T 〈A〉
is always the same as the value assigned to A itself. Call any model with these
features a KK model (for ‘Kleene-Kripke’).3

The models produced by this construction have two main features that make
them interesting for our purposes: they are conservative and they are transpar-
ent. Conservativeness first.4 For any model M of L, the model M+ of L+

produced by this construction agrees with M in its interpretations on the entire
language L. This includes cases in which M interprets L fully classically; in
these cases, so too will M+. All the usual paradoxical sentences can be formu-
lated, due to the presence of 〈 〉. For example, we might have a sentence λ that
is ¬T 〈λ〉. This is no impediment to the construction.5 Moreover, M can be
very rich indeed, and include predicates and terms appropriate for any subject
matter whatsoever. Since M+ agrees with M on L, the addition of T can be
seen to have no effect on the T -free fragment of the language.

The resulting models are also transparent: they assign A and T 〈A〉 the same
value, for every A. If we use KK models to define a notion of consequence, that
notion of consequence will feature transparent truth: no amount of swapping
As for T 〈A〉s, or vice versa, will ever affect the validity of any argument. This
is for the simple reason that no KK model can assign a formula A a different
value from T 〈A〉. So long as all connectives are value-functional, and validity
itself depends only on values taken by formulas on KK models, this result will
hold.

There is an important question left to be answered, though: how are we
to define a notion of consequence on KK models? We can understand logical
consequence as usual, as absence of countermodel. The question then amounts
to: what is a countermodel to an argument? Classically, a countermodel to an
argument from premises Γ to conclusions ∆ is a model that assigns 1 to every
member of Γ and 0 to every member of ∆. There are multiple ways to extend
this notion to three-valued KK models.

Some of these ways result in relatively familiar logics. One way, resulting
in the logic we’ll call K3TT (for K3 with transparent truth), is to take a coun-

2Note that this means we will use only models with infinite domains, since there are
infinitely many wffs to talk about. To define a näıve satisfaction predicate, we should also
require the models to be acceptable in the sense of [Moschovakis, 1974], allowing for encoding
finite sequences of members of the domain into individual members of the domain. (We won’t
worry more about satisfaction here, as the relevant features of the Kripke construction are
already present with truth, and satisfaction poses no additional problems.)

3KK models are thus [Kripke, 1975]’s fixed points. Every fixed point—minimal, maximal,
intrinsic, and otherwise—is a KK model. Every KK model is a Kripkean fixed point as well,
so long as we remember not to impose Kripke’s restriction to classical base models.

4For experts: this is the stronger model-theoretic notion of conservative extension.
5Our presentation of L and L+ does not guarantee that there will be such a sentence; but

neither does it guarantee that there will not be. We assume, for our purposes in this paper,
that there will be a liar sentence, a Curry sentence, and any other sort of paradoxical sentence.
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termodel to be a model that assigns 1 to every member of Γ and some value
less than 1 to every member of ∆. Another way, resulting in the logic we’ll
call LPTT (for LP with transparent truth), is to take a countermodel to be a
model that assigns some value greater than 0 to every member of Γ and 0 to
every member of ∆. A third way, resulting in the logic we’ll call S3TT (for S3
with transparent truth), is to take a countermodel to be a model on which the
minimum value assigned to the Γs is greater than the maximum value assigned
to the ∆s. (An argument is S3TT valid, then, iff it is both K3TT valid and
LPTT valid.) Note that all three of these definitions become equivalent to each
other, and to the usual classical definition, if we restrict ourselves to two-valued
classical models.

These logics (particularly K3TT and LPTT) are familiar in the literature
on transparent truth, but they are not much advocated for. The main rea-
son is their relative weakness. All three are considerably weaker than clas-
sical logic, but, more importantly, they lose many intuitively plausible and
useful inference forms. For example, K3TT does not validate excluded mid-
dle (� A ∨ ¬A) or, equivalently, identity (� A ⊃ A), LPTT does not validate
material modus ponens (A,A ⊃ B � B), and S3TT validates none of these.
As a result, most authors who work with variations on these logics (such as
[Field, 2008, Priest, 2006b, Beall, 2009]) vary them by adding extra connectives
that recover some of the strength these systems give up.6

Here, though, we will consider a different way of using KK models to define
a usably strong logic. We will add no extra connectives, staying fully within the
usual classical logical vocabulary. Instead, we will define validity differently.

3.2 The logic STTT

The definition we consider stays very close to the familiar classical definition.
We say a model is an ST countermodel to an argument from premises Γ to
conclusions ∆ iff the model assigns 1 to every member of Γ and 0 to every
member of ∆. The logic STTT (for ST with transparent truth) is the logic that
results from this definition over KK models.7

It is immediate that STTT is stronger than both K3TT and LPTT: any
STTT countermodel is automatically both a K3TT and an LPTT countermodel,
but there are K3TT and LPTT countermodels that are not STTT countermod-
els.

In fact, STTT is a strong logic indeed. First, consider its T -free fragment,

6On the other hand, defenders of S3TT, as far as we can see, do not take this route. This
is odd, since S3TT is weaker than either K3TT or LPTT, and so it seems to need even more
help than they do. It might be explained by the lack of well-developed theories of truth based
on S3TT; [Kremer, 1988] and [Halbach and Horsten, 2006] both explore the logic, but neither
spends much time defending it.

7We have considered (in [Cobreros et al., 2012b]) a similar approach to providing a logic
for vagueness. There, our models were (implicitly) four-valued, but again, we took an ST
countermodel to be a model assigning 1 (the top value) to all the premises and 0 (the bottom
value) to all the conclusions. Related ideas are also explored in [Nait-Abdallah, 1995], among
other places.
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ST. ST is exactly classical logic augmented with quote-names. To see this,
consider the usual sort of two-valued classical model for L, imposing the re-
quirement (as ever) that 〈A〉 denote A, for every wff A of L+. Let CL be the
usual classical consequence relation defined over these classical models.

Then an argument from premises Γ to conclusions ∆ is ST valid iff it is
CL valid; we will refer to this as ‘classically valid’ throughout this paper.8 For
proof, see [Ripley, 2012a]; the rough idea is this. Any CL counterexample to
an argument immediately provides an ST counterexample, since (by Kripke’s
result) any CL model can be extended to a KK model. Similarly, any ST
counterexample can be used to provide a CL counterexample: we build a two-
valued model for the T -free language by assigning to atomic wffs value 1 where
the ST countermodel assigns value 1, 0 where it assigns 0, and 1 or 0 (it doesn’t
matter which) where it assigns 1

2 . It can be shown that this always results in a
CL counterexample to the argument.

So ST captures classical validity. This means that STTT conservatively
extends CL: the only difference comes in arguments that involve T . On its
own, this might still leave us worried about STTT’s strength: STTT preserves
all classically-valid inferences in the T -free language, but what does it have to
say about the full language? The conservative extension result assures us that
A ∨ ¬A, for example, is valid when A includes no T . But what about when A
does include a T?

This is a sensible worry. But, as it turns out, STTT preserves all classical
validities: if Γ �CL ∆, then Γ? �STTT ∆?, for any uniform substitution ? on
the full language. (For proof, see [Ripley, 2012a].) This ensures that arguments
valid in the base language retain their validity in the full (T -involving) language.
Thus, STTT adds to classical logic in a benign way; it does not affect validity
in the T -free vocabulary, and it allows T -free validities to extend to the full
vocabulary.

Since STTT is defined on KK models, it includes a fully transparent truth
predicate. So STTT is a logic with some interesting features; it is a conserva-
tive extension of CL with a transparent truth predicate, which allows classical
reasoning to be used over the full language. This also shows that STTT in-
cludes the unrestricted T -schema; since �CL A ≡ A, by the above results we
have �STTT A ≡ A, and thus by transparency �STTT A ≡ T 〈A〉. STTT shows
that we can use KK models to define a logic for transparent truth that does not
suffer from the excessive weakness of K3TT, LPTT, and S3TT, without adding
any extra connectives or other vocabulary.

Despite its considerable affinities with classical validity, however, STTT
holds some surprises. First among these is that it is nontransitive. There are
wffs A, B, and C such that A �STTT B and B �STTT C, but A 6�STTT C. For
example, consider a liar sentence λ equivalent to ¬T 〈λ〉. This sentence must
take value 1

2 on every KK model; it can receive no other value compatible with
the constraints on ¬ and T . Since ST requires countermodels to go from 1 to

8It is actually a slight extension of pure classical logic, at least in the presence of =, since
all these models have infinite domains, and since sentences like 〈p〉 6= 〈q〉 are valid. See also
footnote 2.
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0, there is no ST countermodel to the argument from p to λ; thus, p �STTT λ.
Similarly, there is no ST countermodel to the argument from λ to q; λ �STTT q.
Nevertheless, it is easy to find an ST countermodel to the argument from p to
q; just assign 1 to p and 0 to q. Therefore, p 6�STTT q. STTT consequence is
not transitive.

This nontransitivity, though, is quite limited. It is restricted in the fol-
lowing way. Let generalized transitivity be the move from Γ �STTT A,∆ and
Γ, A �STTT ∆ to Γ �STTT ∆ (in a sequent-calculus presentation, generalized
transitivity amounts to the rule of cut). We know that generalized transitivity
cannot hold in general; the counterexample above shows that. But it will hold
in very many cases. In order to get a counterexample, we need Γ 6�STTT ∆:
there must be some KK model on which every member of Γ takes value 1 and
every member of ∆ takes value 0. Call the set of all such models M; we know M
is nonempty. Now, if A takes value 1 on any model in M, then Γ, A 6�STTT ∆,
so we do not have a counterexample to generalized transitivity; similarly, if A
takes value 0 on any model in M, then Γ 6�STTT A,∆, so we again do not have
a counterexample. It follows that, in any counterexample to generalized transi-
tivity, A must take value 1

2 on every model in M; that is, there must be no way
to assign A value 1 or 0 while the Γs all get value 1 and the ∆s all get value
0. It is quick to verify that this is a sufficient condition for counterexample as
well.

So we have a counterexample to generalized transitivity—Γ �STTT A,∆
and Γ, A �STTT ∆ but Γ 6�STTT ∆—iff: there is some KK model that assigns
1 to everything in Γ and 0 to everything in ∆, and every such model assigns
1
2 to A. This is not a situation that often arises. In particular, it can be
shown (by standard cut-elimination, for example), that this situation never
arises when the arguments from Γ, A to ∆ and from Γ to A,∆ are both classically
valid. (For some other conditions also sufficient to guarantee transitivity, see
[Ripley, 2012a].) As a result, our endorsement of a nontransitive logic in no
way amounts to a criticism of any classical uses of transitivity. We merely resist
the assumption that transitivity can continue to operate freely once transparent
truth is taken account of.9

3.3 Metainferences

Transitivity (and its generalized relative) are familiar metainferences: they are
principles under which a consequence relation might (or might not) be closed.10

It’s important to be clear on the difference between a valid argument and
a validity-preserving metainference, so we pause here to look at an example of
each. Consider modus ponens. In its most basic form, it is an argument from
premises A and A ⊃ B to the conclusion B. A logic can validate this argument
or not; as examples, STTT validates every instance of it (soA,A ⊃ B �STTT B),
and LPTT does not (so A,A ⊃ B 6�LPTT B).

9Thanks to Sam Butchart, Graham Priest, and an anonymous referee for discussion here.
10Sometimes “rule” is used in the same sense, as an anonymous referee reminds us.
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There is a metainference that also travels under the name “modus ponens”,
however, and it is importantly distinct. This metainference moves from Γ ` A
and Γ ` A ⊃ B to Γ ` B. Here, ` should be read as a consequence relation; some
consequence relations are, and some are not, closed under this metainference.
For example, classical validity is closed under this metainference. (This is so
whether classical validity is embodied by CL or by ST, since, as we mentioned
above, these two give completely equivalent results.) That is, whenever both
Γ �CL A and Γ �CL A ⊃ B, it is also the case that Γ �CL B.

STTT, on the other hand, is not closed under this metainference. There are
cases in which Γ �STTT A and Γ �STTT A ⊃ B, but Γ 6�STTT B. For example,
consider the liar sentence λ, discussed above. As one can quickly verify, we have
�STTT λ and �STTT λ ⊃ p, but 6�STTT p. In fact, [Negri and von Plato, 2001,
p. 19] show that this metainference is equivalent to generalized transitivity
(given certain assumptions, which hold for STTT). Since STTT is not closed
under generalized transitivity, we can conclude that it is also not closed under
this metainference.

As this example demonstrates, it is possible to break a metainference by
adding validities to a logic. Although every classically-valid argument is also
valid in STTT, classical validity is closed under some metainferences that STTT
validity is not closed under. The additional valid arguments in STTT give new
opportunities for counterexamples to various metainferences. It’s possible for
a logic to retain all classically valid arguments across its full vocabulary while
still failing certain classical metainferences, by adding new valid arguments, and
STTT does just this. This immediately leads to two questions about STTT, one
technical and one philosophical. First, just how many familiar metainferences
does STTT fail? Second, how classical can STTT be if it fails metainferences
that classical validity is closed under? Here, we answer each question in turn.

We’ve already seen two familiar metainferences failed by STTT: generalized
transitivity and the metainferential relative of modus ponens. (We emphasize:
modus ponens itself is an STTT-valid argument, as STTT preserves the valid-
ity of every classically-valid argument.) These two, we’ve also noted, are not
independent. There is a third related issue as well: a bit of care is called for
around the metainference of reductio. (Since double-negation rules hold without
restriction in STTT, there is no difference between “intuitionist” and “classical”
forms—the care required is different.)

In one familiar form, reductio moves from Γ, A ` ¬A,∆ to Γ ` ¬A,∆;
this form preserves validity in STTT. In another familiar form, it moves from
Γ, A ` ⊥,∆ to Γ ` ¬A,∆; this form also preserves validity in STTT. In a third
form, though, reductio moves from Γ, A ` B ∧ ¬B,∆ to Γ ` ¬A,∆, and this
form does not preserve validity in STTT. (For example, p �STTT λ ∧ ¬λ, but
6�STTT ¬p.)

It is less apparent this is related to the loss of transitivity, but in fact it is.
In the presence of transitivity, one can conclude from Γ, A ` B ∧ ¬B,∆ and
B ∧ ¬B ` ¬A that Γ, A ` ¬A,∆, or from Γ, A ` B ∧ ¬B,∆ and B ∧ ¬B `
⊥ that Γ, A ` ⊥,∆; one is then in a position to apply one of the forms of
reductio that does preserve validity in STTT. Without transitivity, though,

8



there is no guarantee that one can get to Γ, A ` ¬A,∆ or Γ, A ` ⊥,∆, and thus
no guarantee that reductio can apply.

As far as loss of familiar and important metainferences goes, that’s about it.
(Of course new “failures” of unfamiliar and unimportant metainferences can be
generated ad infinitum by quick tweaks on the above.) Just to reassure, all the
following metainferences hold in STTT (for proofs, see [Ripley, 2012a]):11

Monotonicity: If Γ �STTT ∆, then Γ,Γ′ �STTT ∆,∆′.

Structural contraction: If Γ, A,A �STTT ∆, then Γ, A �STTT ∆; and if
Γ �STTT A,A,∆, then Γ �STTT A,∆.

Proof by cases: If Γ, A �STTT ∆ and Γ, B �STTT ∆, then Γ, A∨B �STTT ∆.

Classical deduction theorem: Γ, A �STTT B,∆ iff Γ �STTT A ⊃ B,∆.

Conjoining premises, disjoining conclusions: Γ �STTT ∆ iff Γ′ �STTT

∆′, where Γ′ comes from Γ by possibly conjoining some of its members,
and ∆′ comes from ∆ by possibly disjoining some of its members.

It’s worth noting that many other approaches to truth do not retain all
these metainferences. For example, supervaluationist approaches based on
[Kripke, 1975], as discussed in [Field, 2008, Hyde, 1997], give up proof by
cases and disjoining conclusions, the nonclassical approaches in [Beall, 2009,
Field, 2008] give up the deduction theorem (in fact, they even give up the much
weaker version of the deduction theorem without side premises or conclusions),
and the contraction-free approach recommended in [Zardini, 2011] gives up not
just structural contraction, but proof by cases as well. Even the classical theory
FS described in [Friedman and Sheard, 1987] gives up the deduction theorem.
What’s more, these failures are not incidental to these approaches; with the
metainferences imposed the approaches simply do not work. That is, they triv-
ialize, yielding the result that Γ � ∆ for any Γ,∆. (For further discussion of
these theories, see §5.)

This is enough to give a sense of the situation with familiar metainferences
in STTT. The question remains: is it appropriate to see STTT as preserving
classical logic, given that it fails some metainferences that preserve classical
validity? This is in some sense a purely terminological question, but there
is a philosophical core to it. We often think of logics as involving both valid
arguments and metainferences; by losing metainferences, it seems we weaken our
logic. Even though STTT keeps all classically-valid arguments, if it loses some
metainferences, then it might seem to have weakened some aspect of classical
logic, and this could be enough to put it in with other nonclassical approaches
to paradox.

Even if this claim were right, it would not be too much trouble; it’s not a bad
crowd to be lumped in with. Nonclassical approaches to paradox include some of

11Sequent calculi are a way to present a logic almost entirely through metainferences, and
[Ripley, 2012b] shows that STTT retains all the rules of usual (cut-free) classical sequent
calculi as well.
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the subtlest, most valuable, and most plausible approaches. However, the claim
is not right: one does not weaken a logic simply by losing a metainference.

We will explore this first in a specific case and then in some generality. First,
the specifics. Consider the propositional modal logics S4 and S5. It is clear, we
take it, that S5 is a strengthening of S4; indeed, if S5 is not a strengthening of
S4, then we have no idea what use the notion of strengthening might be put to.
Nonetheless, S5 fails some metainferences that S4 obeys. For example, consider
the metainference: If ` ♦p ⊃ �♦p, then ` ⊥. S4’s consequence relation is closed
under this rule, since 6�S4 ♦p ⊃ �♦p. However, S5’s consequence relation is not,
since �S5 ♦p ⊃ �♦p but 6�S5 ⊥.

This is not a coincidence; facts like this hold under very minimal conditions.
Let the universal consequence relation be the relation `U that holds between
every possible combination of premises and conclusions, and suppose we have
two consequence relations `1 and `2 such that `1 ⊂ `2 ⊂ `U (note that these
are strict inclusions). Then `1 is closed under some metainferences that `2 is
not closed under. That is, strengthening a logic always involves losing metain-
ferences, unless we strengthen all the way to the universal consequence relation.

Here’s why: let Γ,∆ fall in the difference between `2 and `1; that is, choose
Γ,∆ so that Γ `2 ∆ but Γ 6`1 ∆. (By the strict inclusion of `1 in `2, there
will be some such.) Similarly, let Γ′,∆′ fall in the difference between `U and
`2. Then `1 is closed under the metainference: if Γ ` ∆, then Γ′ ` ∆′, but `2
is not. We want to stress that these are very minimal conditions indeed; they
arise just about every time a logic is extended at all. It thus makes no sense to
think of losing a metainference as weakening a logic—every time we strengthen
a logic, we lose metainferences, so long as we don’t strengthen all the way to
the universal consequence relation.12

In other words, if STTT gives up something important about T -free classical
logic, it cannot be because it fails some metainferences that hold for T -free
classical logic; any way at all of extending classical logic (short of moving to
the universal consequence relation) does that. It must rather be because there
is something important about the particular metainferences in question. In the
case of STTT, we reckon the focus should rest on (generalized) transitivity.

Again we must be careful to set terminological questions aside (although
it is interesting to notice how vague the concept of classical logic turns out
to be). Even if one uses the word ‘classical’ so as to exclude STTT on the
grounds of its nontransitivity, it cannot be denied that STTT is a conservative
extension of classical logic that allows its users to recognize that every classically-
valid argument is valid over the full vocabulary.13 We take this to suffice for

12The S4/S5 example above fits this mold; so too does the following example. Classical
predicate logic fails some metainferences that hold in classical propositional logic; for example,
if ∀xPx ` Pa, then p ` q. It would be a serious abuse of terminology to hold that classical
predicate logic does not preserve classical propositional logic for this reason. (To be able to
make a direct comparison, we assume that both logics share the same language; then classical
propositional logic simply treats things like ∀xPx as atoms.)

13An anonymous referee objects that arguments to ⊥ stemming from semantic paradox are
classically valid, and so, given our refusal to accept such arguments, we should not claim to
preserve all classically-valid arguments. However, such arguments are not classically valid:
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preserving classical logic.

3.4 Coding, induction, and compositionality

This far, we’ve been working with a simple quote-name approach, on which 〈A〉
names the wff A, and there’s nothing more to it. However, an ideal theory of
truth should include more than this: we want a full theory of syntax. In this
subsection, we’ll discuss how to achieve this within STTT. We use Peano arith-
metic and Gödel coding to get the job done; for details, see eg [Boolos, 1995].
We’ll write pAq for the code of a piece of vocabulary A. We use a predicate
sent(x) true of all and only the codes of sentences, a predicate var(x) true
of all and only the codes of variables, and functions ¬̇, ∧̇, ∀̇, and Ṫ such that
for any formulas A, B, and variable x: ¬̇pAq = p¬Aq, pAq∧̇pBq = pA ∧ Bq,
∀̇pvqpAq = p∀vAq, and ṪpAq = pTpAqq. Such predicates and functions are
definable from the vocabulary of PA. (Corresponding functions for ∨, ⊃, ≡,
and ∃ can also be defined, and will work the same, mutatis mutandis. For this
subsection only, we forget all about quote-names.)

In this framework, we can express the so-called ‘compositional principles’:
principles like ∀x∀y(sent(x∧̇y) ⊃ (T (x∧̇y) ≡ (Tx ∧ Ty))). These seem to
express important claims about truth: in this case, that a conjunction of any
two sentences is true iff the sentences themselves are both true. Each connective
and quantifier gives rise to a compositional principle. The others, in the present
vocabulary, are ∀x(sent(x) ⊃ (T ¬̇x ≡ ¬Tx)) and ∀x∀y(sent(∀̇xy) ⊃ (T ∀̇xy ≡
∀t(y(t/x)))), where if y = pAq and x = pvq, y(t/x) is the code of the formula
that results from substituting t for v everywhere in A.

Starting from the standard classical model M of (T -free) PA, we can again
use Kripke’s result to show that there are models extending M with a truth
predicate T such that for any formula A, TpAq gets the same value on M that
A does. Call these models KKP models (for ‘Kleene-Kripke-Peano’), and define
a new notion �STTTPA of consequence analogously to �STTT , but restricted to
KKP models.

Clearly, every theorem of T -free PA will receive value 1 in every KKP model.
But with T in the language, there are new instances of PA’s induction axiom
schema formulable. Not all of these can take value 1, but they all do take value
greater than 0 on every KKP model.14 Thus, every instance I of the induction
schema, even extended to those instances involving T , is such that �STTTPA I;
they are all theorems.

Moreover, the compositionality principles alluded to above are also theorems
of �STTTPA . It is shown in [Halbach, 2011] that the system there named PKF is

they turn on applications of truth rules not contained in classical logic, and on chaining those
applications together with classically-valid subarguments. (It is the chaining that we take to
be the source of the problem.) As such, our avoidance of these problematic arguments is in
no way a rejection of any classically-valid arguments.

14The instances are all of the form (A(0) ∧ ∀x(A(x) ⊃ A(x + 1))) ⊃ ∀xA(x). The only way
for this sentence to get value 0 on a KKP model M is for A(0) ∧ ∀x(A(x) ⊃ A(x + 1)) to
get value 1 and ∀xA(x) to get value 0. This cannot happen, given the constraints on ⊃ and
∀—and remembering that KKP models are built over the standard model of PA.
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sound over KKP models. PKF includes the turnstile versions of the composi-
tionality principles; for example, it includes sent(x∧̇y), T (x∧̇y) ` Tx ∧ Ty. It
can be shown that 1) if these principles hold in PKF, then they hold in STTTPA,
and 2) if these principles hold in turnstile form in STTTPA, then they hold in
quantified theorem form as well (due to STTTPA’s obeying a deduction theorem
and allowing for the sequent metainference introducing ∀ on the right). As a
result, STTT, when restricted to fixed points over the standard model of PA,
allowing it to express its own syntax, automatically captures the compositional
principles that some other theories of truth struggle with.

For the remainder of the paper, we return to the quote-name approach,
for simplicity; but we will sometimes recall these nice features of the system
including arithmetic.

4 Paradoxes

4.1 Paradoxical arguments

If every inference form valid in classical logic is STTT-valid as well, and STTT
supports a transparent truth predicate, then where does the liar argument go
wrong? Here’s one version of the argument, as a proof by cases, where λ is the
liar sentence ¬T 〈λ〉:

>
LEM

T 〈λ〉 ∨ ¬T 〈λ〉

[T 〈λ〉]1
Transparency

λ
Def. λ

¬T 〈λ〉
∧I

T 〈λ〉 ∧ ¬T 〈λ〉

[¬T 〈λ〉]1
Def. λ

λ
Transparency

T 〈λ〉
∧I

T 〈λ〉 ∧ ¬T 〈λ〉
∨E, 1

T 〈λ〉 ∧ ¬T 〈λ〉
Explosion

⊥

If indeed > �STTT ⊥, something has gone very wrong: this would tell us
that every model such that 1 = 1 is such that 0 > 0; in other words, it would
tell us that there are no models, and so no countermodels, so Γ �STTT ∆ for
every Γ,∆. We know, since STTT conservatively extends classical logic, that
this is not the case, but how is it avoided?

Every step in the above proof is STTT-valid: all but the T steps are classi-
cally valid, and the T steps are covered by transparency. (After all, A �STTT A,
so transparency guarantees that A �STTT T 〈A〉 and T 〈A〉 �STTT A.) It’s the
attempt to chain these steps together that’s gone wrong, as we will presently
show.

Remember, an STTT-valid argument is one that can never go from value 1
to value 0. The present argument, however, by moving from > to ⊥, always goes
from 1 to 0—every KK model is a countermodel. Despite this, no KK model is
a countermodel to any particular step of the argument. The descent from value
1 to value 0 happens in two stages, neither of which would be sufficient on its
own. Let’s look at this in more detail.
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The first of these two stages is the application of LEM—concluding T 〈λ〉 ∨
¬T 〈λ〉 from >. As a classically-valid argument, this is STTT-valid as well; it
cannot go from value 1 to value 0. In this case, though, it goes from value 1 to
value 1

2 on every KK model (since λ takes value 1
2 on every KK model). The

second of the two stages is the application of Explosion—concluding ⊥ from
T 〈λ〉∧¬T 〈λ〉. As a classically-valid argument, this too is STTT-valid; it cannot
go from value 1 to value 0. In this case, though, it goes from value 1

2 to value
0 on every KK model.

So although every step is valid—no step can go from 1 to 0—chaining them
together in this way has resulted in an invalid argument. The descent from 1 to
0 is split across different steps.

A similar approach works for the Curry paradox, a sentence κ that is T 〈κ〉 ⊃
⊥. Consider the following argument:

>
PC

(T 〈κ〉 ∧ (T 〈κ〉 ⊃ ⊥)) ⊃ ⊥
Def. κ

(T 〈κ〉 ∧ κ) ⊃ ⊥
Transparency

(T 〈κ〉 ∧ T 〈κ〉) ⊃ ⊥
PC

T 〈κ〉 ⊃ ⊥
Def. κ κ

Transparency
T 〈κ〉

>
PC

(T 〈κ〉 ∧ (T 〈κ〉 ⊃ ⊥)) ⊃ ⊥
Def. κ

(T 〈κ〉 ∧ κ) ⊃ ⊥
Transparency

(T 〈κ〉 ∧ T 〈κ〉) ⊃ ⊥
PC

T 〈κ〉 ⊃ ⊥
⊃E

⊥
Again, every step is STTT-valid, but the proof seems to show that > �STTT

⊥. We know, since STTT conservatively extends classical logic, that this is not
the case, so the trouble must have again come from linking the steps together.
Although no single step can go from value 1 to value 0, the whole argument
does manage to go from 1 to 0. Again, we can narrow the problem down to
two steps, one of which goes from 1 to 1

2 and the other of which goes from 1
2

to 0. (Again, this works for every KK model, as all agree in assigning κ the
value 1

2 .) The descent from 1 to 1
2 happens in the first step of each subproof:

(T 〈κ〉 ∧ (T 〈κ〉 ⊃ ⊥)) ⊃ ⊥ only has value 1
2 . The descent from 1

2 to 0 happens
at the very end: both T 〈κ〉 and T 〈κ〉 ⊃ ⊥ have value 1

2 , but ⊥ always takes
value 0. Again, the problem with this argument is not in any particular step,
but rather in chaining these steps together.

Since STTT is a conservative extension of classical logic, we know that there
is no way an as-yet-undiscovered paradox will trivialize it. All formulable para-
doxes15 will have treatments like the liar and Curry above; somewhere in the
derivation of the troublesome conclusion, if every individual step is valid, there
will be an illicit use of transitivity. The descent from 1 to 0 will not happen all
at once, but it will happen bit by bit instead.16

15An example of an (as-yet-) unformulable paradox: we include no treatment here of definite
descriptions, and so cannot formulate Berry’s paradox. We will treat this (and others) in future
work.

16For example, in the Jones/Nixon case explored in [Kripke, 1975], if the circumstances are
such as to render the case paradoxical, it will emerge that both Jones’s and Nixon’s utterances
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4.2 The status of paradoxical sentences

So much for logical consequence. A natural next question, though, is what
status paradoxical sentences have on our view. Consider again the liar λ. It is
both a theorem (�STTT λ) and refutable (λ �STTT ). Similarly, the claim that
it’s true is both a theorem and refutable, as is the claim that it’s false. What
do we say about such sentences, then?

Here, we see two options that directly present themselves. Rather than argue
for one in particular, we will briefly present them both, without much in the
way of evaluation. Which is a better choice, or whether there is some third
choice better than both, are issues we leave for future work.

The first approach works at the level of pragmatics. On this approach, what
can be said about paradoxical sentences depends on how the saying is being
done. As in [Ripley, 2012b], we distinguish two forms of assertion, strict and
tolerant. Strictly, the liar and other paradoxical sentences cannot be asserted;
tolerantly, they can. The same goes for their negations. Since the truth predi-
cate is fully intersubstitutable, if we speak strictly we do not claim either that
these sentences are true or that they are not true; if we speak tolerantly, we
happily claim both.

It is natural to see the values in a model theory as intimately tied to (ide-
alized) assertibility; this is so whether one thinks that assertibility is prior to
semantic value or vice versa (or neither). More familiar approaches to three-
valued models invoke a notion of “designated value”; this amounts to imposing a
two-way division over the top: either value-1 sentences are assertible and others
are not, or else value-0 sentences are not assertible and others are. But there is
no way to understand an STTT-based approach in terms of designated values,
and we do not impose this two-way division.17

Instead, we can see a direct connection between model-theoretic value and
assertibility. A sentence is either both strictly and tolerantly assertible (value
1), tolerantly but not strictly assertible (value 1

2 ), or not assertible at all (value
0). We do not allow for sentences that are strictly but not tolerantly assertible;
strict assertion, on this picture, is a (strictly) stronger speech act than tolerant
assertion. Paradoxical sentences reveal the difference between strict and tolerant
assertion: they are tolerantly but not strictly assertible.

The other approach works at the level of meaning. Rather than supposing
that there are two distinct speech acts of assertion, this approach supposes
that each sentence has two distinct meanings (or two distinct aspects of its
meaning, if you like) that can be asserted: its strict meaning and its tolerant
meaning. Understanding meanings as dividing the space of models in two, we
can understand a sentence’s strict meaning as one drawing a division between
those models on which the sentence takes value 1 and those on which it takes
some value less than 1, and we can understand a sentence’s tolerant meaning as
one drawing a division between those models on which the sentence takes some

can be demonstrated to take value 1
2

.
17As [Dunn and Hardegree, 2001] show, every logic based on designated values in the usual

way is transitive.
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value greater than 0 and those on which it takes value 0.
This is the approach we explored for vague language in

[Cobreros et al., 2012b]. Again, strict and tolerant are related by strength:
every sentence’s strict meaning is at least as strong as its tolerant meaning.
Paradoxical sentences, on this picture, reveal the difference between strict and
tolerant meaning; they are those sentences whose tolerant meanings are true
but whose strict meanings are not.18

Unlike the pragmatic approach, this approach must immediately grapple
with apparent revenge problems in the present context. For example, the sen-
tence ‘This sentence’s strict meaning is not true’ would seem to function as a
liar. We are not so worried about this possibility. One can try to argue as
follows: “If its strict meaning is true, then its strict meaning is not true (since
that’s what it says); so its strict meaning is not true. But then what its strict
meaning says is the case, so its strict meaning is also true. Its strict meaning,
then, is both true and not true. But then everything follows.” This reasoning,
though, assumes transitivity throughout, and we’ve given a theory on which
transitivity cannot be assumed, particularly in reasoning involving truth. What
the reasoning shows is that, even when an appropriate treatment of strict and
tolerant meaning is brought into the language itself, there can still be failures
of transitivity due to paradoxes.

As far as we can see, then, there are at least two ways to understand the
status paradoxical sentences have on an STTT-based theory like the one we’ve
advanced here. Both ways take paradoxical sentences to fall in between strict
and tolerant, but one way takes the distinction between strict and tolerant to
be a pragmatic distinction, and the other to be a distinction in meaning. On
the second approach, revenge troubles might seem to loom, but they, just like
the original paradoxes, depend on transitivity, which we expect to fail when
paradoxes are around.

5 Comparisons

This section serves to locate STTT as a formal approach to truth by comparing
it and contrasting it to some of its relatives in the literature. One key difference
between STTT and most other approaches is clear: transitivity. Almost all
existing approaches to truth are based on transitive logics (but see §5.4), while
STTT, quite crucially, is not. The other main distinction is STTT’s preserving
classical logic while adding transparent truth; no other theory combines these
features.

18If we like, we can call sentences whose tolerant meanings are true “tolerantly true” and
sentences whose strict meanings are true “strictly true”, but one should not assume par-
ticular truth-table-based accounts of these predicates. For instance, it cannot be that ‘A
is strictly true’ takes value 1 iff A takes value 1, and takes value 0 otherwise. This would
impose inconsistent requirements on our models, due to the existence of a sentence claim-
ing its own strict untruth. Note that similar restrictions must be required by any approach
based on Kripke’s construction, and can be understood in a number of different ways (as in
[Priest, 2006a, Field, 2008]).
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5.1 FS

The first relative of STTT we should look to is FS, or the Friedman-Sheard
theory of truth. (This theory is presented in [Friedman and Sheard, 1987] and
discussed in eg [Halbach, 2011, Ch. 14].) It is typically presented axiomatically,
by adding a variety of axioms to Peano Arithmetic (PA), along with a pair of
rules:

A
Nec:

T 〈A〉
T 〈A〉

Co-nec:
A

Crucially, FS includes neither A ⊃ T 〈A〉 nor T 〈A〉 ⊃ A as theorems, and
neither can be added, on pain of triviality; it thus does not validate the
T -schema in either direction, one major difference with STTT. (The same
goes for many other classically-minded theories of truth, including those in
[Gupta and Belnap, 1993, Maudlin, 2004].) Since A ⊃ A is valid in the FS
theory, these cases provide counterexamples to transparency as well, another
difference with STTT.

FS is usually considered to be a theory of truth that preserves classical logic.
We think this is right, but want to call attention to what is involved. First,
every classically valid argument remains valid in FS, and this feature extends
to arguments involving truth vocabulary; these are features FS shares with
STTT. Another feature FS shares with STTT is the failure of familiar and useful
metainferences. For STTT, transitivity goes; for FS, it is the deduction theorem
that must fail. With a deduction theorem, we could derive A ⊃ T 〈A〉 from the
rule Nec, or T 〈A〉 ⊃ A from the rule Co-nec, and either would immediately
trivialize the system. The sense in which FS preserves classical logic is thus a
sense that allows for failure of familiar and useful metainferential properties like
the deduction theorem.19

FS and STTT are thus equally examples of approaches to truth that preserve
classical logic, and achieve some measure of control over paradoxes by allowing
for the failure of certain metainferences. The existence of STTT undermines
any attempt to defend FS’s failure to support the T -schema and transparency
by insisting that no approach can preserve classical logic while supporting these
principles. STTT does support these principles, and, as above, it is as classical
as FS. In addition, STTT, like FS, includes the compositional principles for
truth, if we restrict our attention to fixed points over the standard model of PA,
as we pointed out in §3.4.

The final difference between FS and STTT that we’ll mention here: FS is
ω-inconsistent, and can have no standard models. STTT, on the other hand, is
shown to have standard models by the Kripke construction.20

19A referee objects that this is no sense at all, in virtue of the failure of conditional proof in
these systems; but this is a use of terminology that strikes us as quite outside the mainstream.
For example, [Halbach, 2011] clearly distinguishes classical from nonclassical theories of truth,
and puts FS firmly on the classical side of the line. As well he should: it invalidates no
classically-valid arguments. Note in this connection the restrictions that must be put on
conditional proof in normal modal logics; but these clearly preserve classical logic.

20STTTPA, which contains the compositional principles, PA, and a transparent truth pred-
icate, more than satisfies the conditions for the “negative result” in [McGee, 1985], showing
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5.2 Extra-arrow theories

One subfamily of STTT’s nonclassical relatives includes the logics
of [Priest, 2006b, Beall and Ripley, 2004, Brady, 2006, Field, 2008], and
[Beall, 2009]. While these logics differ from each other in various ways, their dif-
ferences from STTT are more uniform; here, we’ll discuss them together, paying
more attention to their common features than to what differentiates them.

Like STTT and unlike FS, most of these logics support full transparency.21

All these logics include, in addition to the defined conditional ⊃, a new condi-
tional→, and most validate the T -schema, at least in the form A↔ T 〈A〉 (Beall
and Ripley’s system rather validates its contraposition, ¬A↔ ¬T 〈A〉). Priest’s,
Beall and Ripley’s, and Beall’s systems in addition validate the T -schema in ≡
form; Brady’s and Field’s do not.

Unlike FS, these theories of truth involve genuinely nonclassical logics;
Priest’s, Beall and Ripley’s, and Beall’s logics are extensions of LP, Field’s
is an extension of K3TT, and Brady’s, as a relevant logic, is an extension of
the logic FDE (see [Anderson and Belnap, 1975] or [Priest, 2008] for details of
FDE). The most apparent nonclassicalities involve negation; none of the logics
validates both excluded middle (A ` B ∨¬B) and explosion (A∧¬A ` B), and
Brady’s validates neither. The situation around reductio is also delicate. While
the LP-based logics support reductio in two of the above-discussed forms—
allowing passage from Γ, A ` ¬A,∆ or from Γ, A ` ⊥,∆ to Γ ` ¬A,∆—none
of these five logics supports reductio in a different form. None allows passage
from Γ, A ` B ∧ ¬B,∆ to Γ ` ¬A,∆. (The usual equivalence between these
forms depends inter alia on explosion, which neither Priest’s nor Beall’s logic
validates.) In contrast, STTT supports both excluded middle and explosion, as
well as the first two forms of reductio. As we mentioned in §3.3, it also does not
support the third form of reductio—there, STTT matches these logics, albeit
for different reasons.

The two conditionals in these logics (⊃ and→) approximate the classical⊃ in
different ways. Because of the failures of excluded middle and explosion, none of
these logics includes both of ⊃-identity (` A ⊃ A) and ⊃-modus ponens (A,A ⊃
B ` B). This is the usual reason for adding →; all five logics validate both →-
identity and →-modus ponens. A difference in the other direction between
the conditionals occurs over the rule of (conditional, rather than structural)
contraction: for all these logics, A ⊃ (A ⊃ B) ` A ⊃ B, but A → (A →
B) 6` A → B. In fact, adding this last validity to any of the logics would
trivialize it immediately. The same goes for the arrow form of→-modus ponens
(` (A ∧ (A→ B))→ B); this too cannot be added to any of these logics. As a
result, none of them can enjoy a deduction theorem for →. In addition, none of
them enjoys both directions of the deduction theorem for ⊃ (even in the weak

that any system meeting weaker conditions than these must be ω-inconsistent. (It is this
result that shows FS to be ω-inconsistent.) Nonetheless, the result does not apply here, as
McGee’s argument depends on assuming transitivity.

21[Priest, 2006b, Beall and Ripley, 2004] are exceptions, for philosophical rather than tech-
nical reasons; we believe that transparency can be added to these systems without triviality.

17



form: A ` B iff ` A ⊃ B); all but Field fail the right-to-left direction, while
Brady and Field both fail the left-to-right direction.

By contrast, STTT’s single conditional ⊃ validates all the principles dis-
cussed here: identity, modus ponens, arrow form modus ponens, contrac-
tion, and a full deduction theorem (even in the strong form: Γ, A ` B,∆ iff
Γ ` A ⊃ B,∆). So these theories, while (at least potentially) sharing STTT’s
transparency, share little of its classicality. A number of important inferences
and metainferences around negation and the conditional are lost.

When it comes to offering a theory of paradoxical sentences, however, there
is more affinity between STTT and these extra-arrow theories. Consider the liar
sentence λ. Priest, Beall and Ripley, and Beall offer theories on which both λ
and ¬λ are to be asserted, and neither is to be denied. If assertion is understood
tolerantly and denial strictly, this is our approach as well. Dually, Field offers a
theory on which both λ and ¬λ are to be denied, and neither is to be asserted.
If assertion is understood strictly and denial tolerantly, this is our approach as
well.22

5.3 Contraction-free

Recently, [Zardini, 2011] has advanced a theory of transparent truth based on
restricting the structural rules of contraction (the rules that allow one to move
from Γ, A,A ` ∆ to Γ, A ` ∆, and from Γ ` A,A,∆ to Γ ` A,∆), and
[Beall and Murzi, 2011] has also offered some arguments in favor of such a view.

Amongst nonclassical approaches, this is probably the closest to STTT. Zar-
dini’s logic IKTω, for example, retains a deduction theorem, excluded middle,
explosion, and weakened forms of reductio. In addition, both IKTω and STTT
have as a theorem every instance of the claim that modus ponens is truth-
preserving: ` (T 〈A ⊃ B〉 ∧ T 〈A〉) ⊃ T 〈B〉.23

There are some notable differences, however. First, IKTω is weaker than
classical logic, even on some very basic arguments: for example, A 6�IKTω

A∧A,
and A∨A 6�IKTω

A. This is crucial; adding these principles would trivialize the
logic. A number of familiar metainferences also fall by the wayside; for example,
both reductio and proof by cases hold only in a weakened form, since the full
forms of these metainferences would bring enough contraction into the system
to trivialize it. Although the loss of classical validities is perhaps less drastic
than in the case of many other nonclassical systems, it is still very much a part
of Zardini’s approach.

Second, while IKTω is known to be nontrivial, its relation to models of PA
has not yet been explored. This leaves in question the status of the compo-

22There is also a real connection “under the hood”. The extra-arrow logics are proved
nontrivial by a model construction whose prototype is the construction in [Brady, 1989]; this
construction involves a transfinite series of what are essentially Kripke fixed-point construc-
tions. The Kripke construction, in all cases, handles T completely, as it does for us in §3.1;
the transfinite series is only necessary to handle the extra arrow.

23STTTPA also includes as a theorem the quantified version of this principle:
∀x∀y(sent(x⊃̇y) ⊃ ((T (x⊃̇y) ∧ Tx) ⊃ Ty)). IKTω ’s relation to arithmetic, and its take
on this quantified form of the principle, is still unknown.

18



sitional principles mentioned in §5.1. STTT, by building on the well-explored
Kripke construction, can provide these principles.

5.4 Nontransitive

Finally, we mention the relation between STTT and the nontransitive system
advanced in [Weir, 2005] to address paradoxes of truth. As with the contraction-
free systems, this system comes quite close to classical logic. In fact, we think
it’s the closest to classical of the nonclassical systems we consider here. However,
it still exhibits some nonclassical, and we think odd, behavior.

A number of crucial arguments, such as modus ponens, are valid in Weir’s
logic only under restricted conditions. In addition, theoremhood cannot be
defined in the usual way (being a consequence of the empty set of premises);
rather, Weir says, “The notion of theoremhood. . . has to be: φ is a theorem iff
for some A,B, we have that A → A,B → B ` φ is provable” (246). (Here, →
is a special conditional in Weir’s logic, not ⊃.)

If one is willing, with Weir, to give up transitivity in the pursuit of truth,
STTT shows that there is no need to make these further modifications. It’s pos-
sible, as we’ve shown here, to give up transitivity while preserving classical logic,
and thus retain unrestricted modus ponens, the usual notion of theoremhood,
and other classical features.

6 Conclusion

This paper has presented and explored a logical framework, STTT, for adding
transparent truth to classical logic. By building on the familiar Kripke con-
struction, but using an unfamiliar definition of countermodel, and so of logical
consequence, STTT allows us both to retain every classically-valid argument
and to allow for a fully transparent truth predicate. This is possible because
some familiar metainferences, crucially including transitivity, fail for STTT.

It’s been claimed [Leitgeb, 2007] that the following eight desiderata for a
theory of truth are not jointly satisfiable: 1) that it include a truth predicate
and a theory of syntax; 2) that, when added to a mathematical or empirical
theory, it allow for that theory to be proven true; 3) that it be type-free; 4)
that it include the full T -schema; 5) that it be compositional; 6) that it allow
for standard interpretations; 7) that its outer and inner logics coincide (that is,
that A entails B iff T 〈A〉 entails T 〈B〉); and 8) that its logic be classical.

When one considers STTTPA (as in §3.4), it turns out that all eight of
these desiderata are satisfied. (Arithmetic is important here to get a theory
of syntax, for desideratum 1, and to formulate the compositional principles,
for desideratum 5.) The argument that they cannot be jointly satisfied turns
crucially on the assumption of transitivity, but transitivity is not among the
eight desiderata, nor does it follow from them. (STTT shows that a logic can
be classical (and thus satisfy desideratum 8) without being transitive.) As
Leitgeb says, “In the best of all (epistemically) possible worlds, some theory of
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truth would satisfy all of these norms at the same time” (283). We might yet
live there, unless transitivity is seen as an additional desideratum. However, as
we’ve tried to argue, the loss of transitivity is minimally disruptive; transitivity
continues to hold in nonparadoxical cases.

There is much left to do. We have not here explored an STTT-based
theory’s prospects for avoiding revenge paradoxes, or description-based para-
doxes like Berry’s. We also have not drawn very many connections be-
tween this treatment of truth and our treatments of vague predicates in
[Cobreros et al., 2012b, Cobreros et al., 2012a], although the approaches are in-
timately related. Although we’ve sketched some relations between our approach
and other approaches in the literature, we have not given the issue the detailed
exploration it deserves. These issues await future research. For now, we are con-
tent to put STTT on the table as suggesting a promising avenue for approaching
the paradoxes.24
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