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We did a lot yesterday...^

• We related proof and truth

Proof Truth

` F |= F

Trees Assignments

Tree on ¬F closed F is valid

Tree on F open F is satisfiable
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...and even more..._

We discovered and related some central concepts of logic:

• decidability: PL is decidable

• completeness: PL has a sound and complete proof procedure

• compactness: when F follows logically from Γ, it follows from a
finite subset of Γ.

We saw a crucial lemma: Γ |= F iff Γ ∪ {¬F} is not satisfiable.
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Glimpses beyond

• There exist other methods of proof for propositional logic:

e.g., axiomatic systems (Frege), natural deduction (Gentzen,
Prawitz), sequent calculus (Gentzen), resolution (Robinson).

• We won’t have time to study them, but the important point is
that they are not all analytic. However, one can establish close
correspondences between these systems and the tree method.
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Exercises

1. Use the tree method to determine whether the following
formulae are tautologies:

((p → q) → p) → p)

((p → ¬p) → ¬p

((p ∨ q) → r) → (p → r) ∧ (q → r)

((p ∨ q) → r) → (p → r)
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2. (from van Dalen) Define the relation F ≺ G (F asymmetrically
entails G) iff |= F → G but 2 G → F .

a. Give an example of two formulae F and G such that F ≺ G

b. Construct an infinite sequence of formulae such that each
formula in the sequence asymmetrically entails the next one.

c. Show that given two formulae F and G such that F ≺ G, one
can find a formula H such that F ≺ H ≺ G.

3. Show that the theory consisting of the single formula p ∨ q, over
the alphabet consisting only of p and q is incomplete (ie find a
formula F of this language such that neither F nor ¬F follows from
that theory.
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Goal of today

• Syntax and Semantics of FOL
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4. First-order Predicate Logic
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Expressive Limitation

• Propositional logic is very limited in expressive power

Everyone likes Mary Ã p

Mary is a painter Ã q

There is a painter whom everyone likes Ã r

• Yet, formally, p, q 2 r.
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• Vocabulary

Mary Ã m

x is painter Ã P (x)

x likes y Ã L(x, y)

• Full sentences

Everyone likes Mary Ã ∀xL(x, m)

Mary is a painter Ã P (m)

There is a painter whom
everyone likes

Ã ∃y(P (y) ∧ ∀xL(x, y))
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Syntax of first-order logic

Vocabulary

• Individual variables: x, y, z, x′, y′, z′, . . .

• Individual constants: a, b, c, a′, b′, c′, . . .

• Predicate symbols: P (1), Q(1), R(1), ..., P (2), Q(2), R(2), ...

• connectives : ¬,∧,∨,→,↔
• Quantifier symbols: ∀, ∃
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Formulae

1. Every variable or constant is a term.

2. Atomic formula: R(t1, ..., tn)

3. Complex formulae: if φ and ψ are formula, so are ¬φ, φ ∧ ψ,
φ → ψ, φ ∨ ψ, ψ ↔ ψ

4. If x is a variable and φ is a formula, ∀xφ and ∃xφ are formulae.

5. Nothing else is a formula.
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Bound and Free variables

Compare:

(1) ∀xR(x, y)

(2) ∀x∀yR(x, y)

EALING 2005 P. Égré
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Bound and Free variables

(1) ∀xR(x, y)

(2) ∀x∀yR(x, y)

y is free in (1), in the scope of ∀ in (2).

Def (a bit informal). The free variables of a formula are the
variables of the formula that are not bound by a quantifier.

Def. A sentence, or closed formula, is a formula without free
variables.

(2) is a sentence ; (1) is an open formula.

EALING 2005 P. Égré



Introduction to Logic 14

First-order language

• A language is a set of predicate and constant symbols.

• ex : L1 = {≤; 0}
In L1, one can write formulae like:

∀x(0 ≤ x), ∃x∀y(x ≤ y)

• ex: L2 = {P (1), L(2);m} : the language of our first example.
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Aristotelian sentences

• Unrestricted quantification: ∀xM(x), ∃xM(x)

• Restricted quantification

Every man is happy : ∀x(M(x) → H(x))

Some man is happy : ∃x(M(x) ∧H(x))

No man is happy : ∀x(M(x) → ¬H(x))

Not every man is happy : ¬∀x(M(x) → H(x))
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Exercise

Translate the following sentences:

1. No student knows all the professors

2. All the rich men like fishing.

3. John has a dog that he likes.
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Interpretation

Given a language L, one interprets the formulas relative to an
L-structure. An L-structure M = (U, IM ) consists of:

• a non-empty set of individuals U (universe of discourse)

• an interpretation function IM mapping the constants and
predicates of L to parts of U :

- if c is a constant symbol, IM (c) = cM is an element in U .

- if R is a predicate symbol of arity n, IM (R) = RM is a
subset of Un.
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Example

• Consider the language L = {P, Q}, where P and Q are unary
predicates.

• Take M = (N, IM ), where IM (P ) = {0, 2, 4, 6, . . . } and
IM (Q) = {1, 3, 5, 7, . . . }.
• M can be written M = (N, PM , QM )

Symbol Interpretation

P PM= the set of even numbers

Q QM= the set of odd numbers
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Example-continued

Consider the formula φ = ∀x(P (x) ∨Q(x))

Relative to the previous structure M , it is true, and it means:
“every integer is even or odd”. We will write:

M |= ∀x(P (x) ∨Q(x))

‘M is a model of φ’

‘M satisfies φ’

‘φ is true in M ’.

• Models play the same role as truth-value assignments in
propositional logic
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Example - continued

However, let M ′ = (N, IM ′
) where IM ′

(P ) = {2, 4, 6, 8, . . . }, and
IM ′

(Q) = {1, 3, 5, 7, . . . }.
Note that 0 is neither in PM ′

nor in QM ′
.

Hence : M ′ 2 ∀x(P (x) ∨Q(x))

• The same sentence can be true in one structure, and false in
another.

• Some sentences are true in every structure:

ex : ψ = ∀x(P (x) ∨ ¬P (x))

Check that M |= ψ, M ′ |= ψ

EALING 2005 P. Égré
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Satisfaction and validity

• An L-sentence φ is satisfiable if there exists an L-structure M

such that M |= φ.

• An L-sentence φ is valid if it is satisfied in every L-structure M .
Notation: |= φ.

However: we have not formally defined the notion of satisfaction
yet...

NB. By satisfaction, we mean the same as truth
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Two ways of interpreting variables

A) Substitutional quantification

B) Variable assignments
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A) Substitutional quantification

Given a structure M , we add to the language a new name c for
every element c of M . Call L′ this enriched language. We allow M

to interpret those new constants, so that cM = c.

M |= R(c1, ..., cn) iff (cM
1 , ..., cM

n ) ∈ RM

M |= ¬φ iff M 2 φ

M |= (φ ∧ ψ) iff M |= φ and M |= ψ

M |= ∃xφ(x) iff M |= φ(c) for some c of L′.

M |= ∀xφ(x) iff M |= φ(c) for every c of L′.
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B) Variable Assignments

• The difficulty is to interpret variables. So far, our interpretations
do not take care of variables, but only of the fixed vocabulary,
namely constants and predicates.

• To interpret the variables, we will use an additional device,
namely assignments. Given a structure M = (U, IM ), a variable
assignment g assigns to each variable an element of the domain U .

Question: why not let the interpretation function do this?

Because, among other things, variables act like pronouns, which
can change their value depending on the context.

EALING 2005 P. Égré
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Variables as pronouns

• The bound variable ! anaphoric pronoun

(1) There is a painter whom everyone likes

∃x(P (x) ∧ ∀yL(y, x))

There is someone such that he is a painter and everyone likes him

• Free variable ! deictic pronoun

(2) He likes Mary

L(x,m)

Here the value of “he” depends on the context.

In context g, “he” denotes John, in context h, “he” denotes Luke.
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Introduction to Logic 26

Assignments

• Rule of thumb: think of variable assignments as contexts fixing
the value of deictic pronouns!

• More than one pronoun needed:

John was observing Dave. He[x:John] could see that he[y:Dave] was
not a good swimmer.

x y z . . .

g John Dave Bill . . .

h Luke Greg John . . .

j Greg Dave Bill . . .
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• Given a context, we can interpret a sentence containing deictic
pronouns: in context g, if L means “like”, L(x, y) is true iff g(x)
likes g(y).
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• Given a structure M = (U, I), and an assignment g, we note
tM,g = I(t) if t is a constant, and tM,g = g(t) if t is a variable.

• Given an assignment function g, we note g[x : d] the assignment
which is like g, except that it assigns to x the value d.

ex : on the previous slide, g[x : Greg] corresponds to j.
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Definition of satisfaction

M, g |= R(t1, . . . , tn) iff (tM,g
1 , . . . , tM,g

n ) belongs to RM .

M, g |= ¬φ iff M, g 2 φ

M, g |= (φ ∧ ψ) iff M, g |= φ and M, g |= ψ

M, g |= ∃xφ(x) iff there exists a d in U such that M, g[x : d] |= φ(x)

M, g |= ∀xφ(x) iff for every d in U , M, g[x : d] |= φ(x)
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Satisfiability again

• A formula φ is satisfiable if there is an interpretation M and an
assignment g such that M, g |= φ.

• A formula φ is valid if for every interpretation M and assignment
g, M, g |= φ.

• If φ is a sentence, whenever M, g |= φ for some g, M, g |= φ for all
g, so we can dispense with the reference to assignments and keep
writing: M |= φ.
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Introduction to Logic 31

Example

Show that ∀x(P (x) ∨ ¬P (x)) is valid. Consider a structure M and
an assignment g.

M, g |= ∀x(P (x) ∨ ¬P (x))

iff for every d in U , M, g[x : d] |= P (x) ∨ ¬P (x)

iff for every d in U , M, g[x : d] |= P (x) or M, g[x : d] |= ¬P (x).

iff for every d in U , d is in PM or d is in PM .
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Logical consequence

Def. a sentence ψ is a logical consequence of φ iff every model of φ

is also a model of φ.

Notation : φ |= ψ
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Example : scope ambiguities

“Everyone loves someone” is ambiguous. Compare:

ψ = ∀x∃yL(x, y) (everyone loves someone or other)

φ = ∃y∀xL(x, y) (someone is loved by everyone)

(a) Show that φ |= ψ

(b) Show that ψ 2 ψ
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• (b) means : find M which satisfies ψ and not φ.

Look at the structure containing three individuals a, b, c, such that
a loves b, b loves c, and c loves a. Clearly: everyone loves someone,
but no one is loved by everyone.

• For (a) : suppose M |= ∃y∀xL(x, y). There is a constant, suppose
it is c, such that M |= ∀xL(x, c). And for every constant d,
M |= L(c, d). So for every d, there is a constant, namely c, such
that M |= L(c, d). That is, M |= ∀x∃yL(x, y).
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Introduction to Logic 35

Some important validities

• Interdefinability of ∀ and ∃:
|= ∃xφ ↔ ¬∀x¬φ

|= ∀xφ ↔ ¬∃x¬φ

• Interaction with conjunction and disjunction

|= ∀x(P (x) ∧Q(x)) ↔ (∀xP (x) ∧ ∀xQ(x)) (everything is red and
big)

|= ∃x(P (x) ∨Q(x)) ↔ (∃xP (x) ∨ ∃xQ(x)) (something is red or big)

exercise: show that 2 ∀x(P (x) ∨Q(x)) → (∀xP (x) ∨ ∀xQ(x))

Show that : |= (∀xP (x) ∨ ∀xQ(x)) → ∀x(P (x) ∨Q(x))
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Exercises

1. Consider the following FO-theory, over a language containing
only the binary symbol R:

∀¬R(x, x)

∀x∃yR(x, y)

∀x∀y(R(x, y) → ¬R(y, x))

a) Show that this theory is satisfiable in a model with 3 elements,
but not in a model with only one, or two elements.

b) Show that the first axiom is entailed by the third.

c) We extend the theory with the axiom:
∀x∀y∀z(R(x, y) ∧R(y, z) → R(x, z)).

Show that the new theory is satisfiable only in an infinite model.
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The “drinker puzzle”

2. a) How would you translate the formula (P (x):= x drinks)

(i) ∃x(P (x) → ∀yP (y))?

b) Show that this formula is logically valid (reason by cases: either
∀yP (y) holds, or not). Show that (ii) (∃xP (x) → ∀yP (y)) is not
valid, and conclude the two formulae don’t have the same meaning.

c) Show (by syntactic manipulations) that formula (i) is logically
equivalent to (iii) (∀xP (x) → ∀xP (x))

d) Yet would you say that the formulae (i) and (iii) have the same
intuitive meaning? Discuss the significance of this puzzle w.r.t the
link between natural language and FOL.
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The validity problem

Is there a sound and complete method for
validity/satisfiability/logical consequence in predicate logic, as
there is for propositional logic ?

Answer: Yes, but there is no decision method.

Let’s see with analytic trees...
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